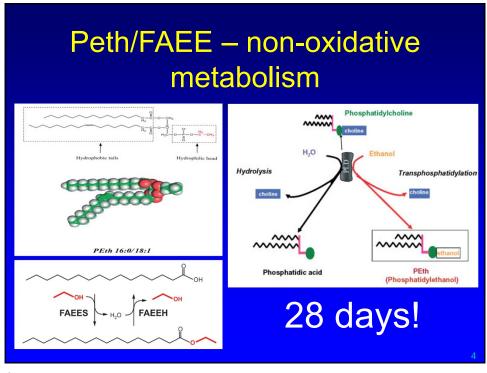

Medical Consequences of Interactions between Alcohol and Drugs


Jörn Schneede, M.D.

1

Effects of ethanol in general

- Direct physico-chemical interactions with cell membranes
 - Direct cell injury
 - Dehydration
 - Precipitation of cytoplasm
 - Neurolysis (trigeminal neuralgia)
 - Integration in cell membranes:
 - PEth formation / fatty acid ethyl esters (FAEE)
- Bacteriocidal / antifungal (dehydration, precipitation of proteins)
- Interaction with a large number of receptors (GABA_A, glycin, glutamate/NMDA, serotonin, acetylcholine, ion channels)
- Enzyme induction (CYP 2E1, CYP1A2, CYP3A4, ALAT/ASAT, GGT)
- Metabolic effects (formation of NADH during ADH-reaction; inhibition of gluconeogenesis and stimulation of liponeogenesis: AFLD)

Alcohol — mechanisms of action a lot of putative mechanisms of action a lot of putative mechanisms! TARCET ACTIONS ORGANISM Garma-aminobutyric acid receptor subunit alpha-1 Golduramate receptor inoutropic, NADA 3A Golyche receptor subunit alpha-2 Golduramate receptor subunit alpha-2 Ovidage-dependent Litype calcium channel subunit beta-1 Golduramate receptor subunit alpha-2 Not Available Humans Golduramate receptor subunit alpha-1 Golduramate receptor subunit alpha-2 Not Available Humans Golduramate receptor subunit alpha-1 Golduramate receptor subunit alpha-1 Golduramate receptor subunit alpha-1 Golduramate receptor subunit alpha-1 Not Available Humans Not Available Humans Not Available Humans Golduramate receptor subunit alpha-1 Golduramate receptor subunit alpha-3 Golduramate receptor subunit alpha-3 Golduramate receptor 1 Not Available Humans Not Available Humans Golduramate receptor 1 Not Available Humans Golduramate receptor 1 Not Available Humans Golduramate receptor subunit alpha-3 Golduramate receptor subunit alpha-3 Not Available Humans Golduramate receptor subunit alpha-3 Not Available Humans Not Available Humans Golduramate receptor subunit alpha-3 Not Available Humans Golduramate receptor subunit alpha-3 Not Available Humans Not Available Humans Sorreenshot jot Available Humans Not Available Humans Sorreenshot jot Available Humans

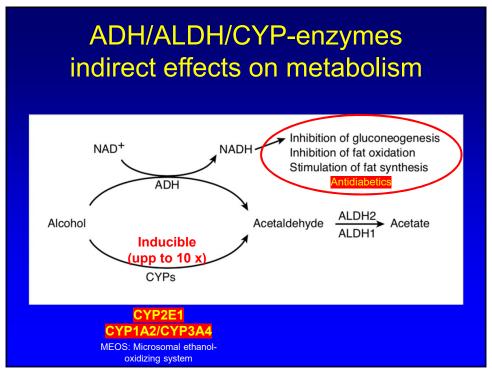
Alcohol – mechanisms of action a lot of putative mechanisms! #2

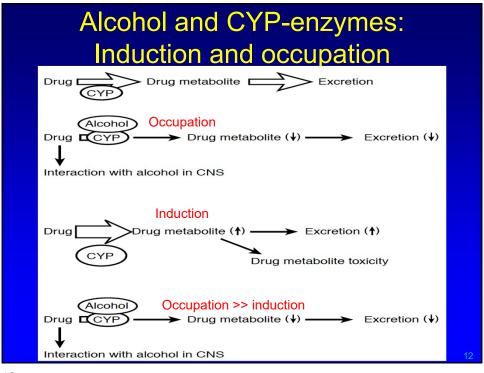
U Glutamate receptor 2	Not Available	Humans
U Glutamate receptor 4	Not Available	Humans
U Glutamate receptor 3	Not Available	Humans
Neuronal acetylcholine receptor subunit alpha-4	Not Available	Humans
Neuronal acetylcholine receptor subunit beta-2	Not Available	Humans
G protein-activated inward rectifier potassium channel 1	Not Available	Humans
G protein-activated inward rectifier potassium channel 2	Not Available	Humans
U Vascular cell adhesion protein 1	Not Available	Humans
Equilibrative nucleoside transporter 1	Not Available	Humans
G protein-activated inward rectifier potassium channel 4	Not Available	Humans
Neuronal acetylcholine receptor subunit alpha-7	Not Available	Humans
Neuronal acetylcholine receptor subunit alpha-9	Not Available	Humans
Gamma-aminobutyric acid receptor subunit beta-1	Not Available	Humans
Gamma-aminobutyric acid receptor subunit beta-3	Not Available	Humans
Gamma-aminobutyric acid receptor subunit beta-2	Not Available	Humans
U Voltage-dependent L-type calcium channel subunit alpha-1S	Not Available	Humans
U Voltage-dependent L-type calcium channel subunit alpha-1D	Not Available	Humans
Neuronal acetylcholine receptor subunit beta-4	Not Available	Humans
Neuronal acetylcholine receptor subunit alpha-3	Not Available	Humans
Neuronal acetylcholine receptor subunit alpha-5	Not Available	Humans

7

Alcohol – mechanisms of action a lot of putative mechanisms! #3

Neuronal acetylcholine receptor subunit alpha-6	Not Available	Human
Neuronal acetylcholine receptor subunit beta-3	Not Available	Human
Gamma-aminobutyric acid receptor subunit gamma-1	Not Available	Human
Gamma-aminobutyric acid receptor subunit gamma-3	Not Available	Human
Gamma-aminobutyric acid receptor subunit epsilon	Not Available	Human
Gamma-aminobutyric acid receptor subunit pi	Not Available	Human
Gamma-aminobutyric acid receptor subunit theta	Not Available	Human
Gamma-aminobutyric acid receptor subunit delta	Not Available	Humar
Equilibrative nucleoside transporter 2	Not Available	Humar
5-hydroxytryptamine receptor 3E	Not Available	Human
U 5-hydroxytryptamine receptor 3B	Not Available	Humar
5-hydroxytryptamine receptor 3D	Not Available	Humar
5-hydroxytryptamine receptor 3C	Not Available	Humar
Voltage-dependent calcium channel gamma-2 subunit	Not Available	Humar
G protein-activated inward rectifier potassium channel 3	Not Available	Human
Neural cell adhesion molecule L1	Not Available	Human



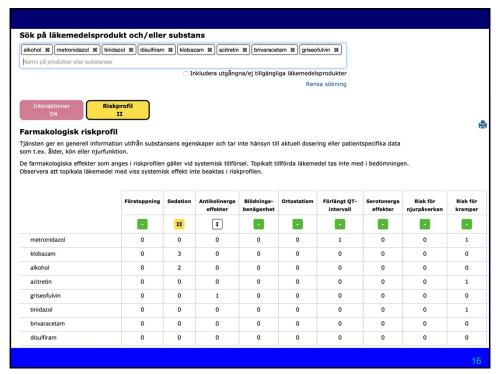

Pharmacokinetics

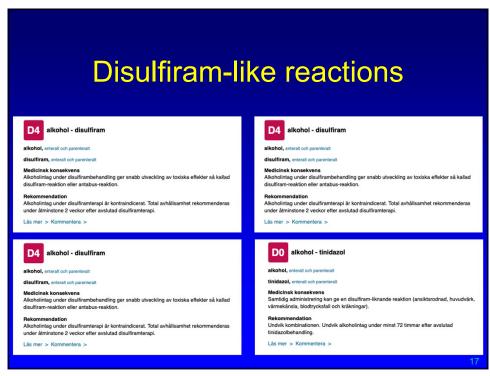
9

Ethanol – key pharmacokinetic data

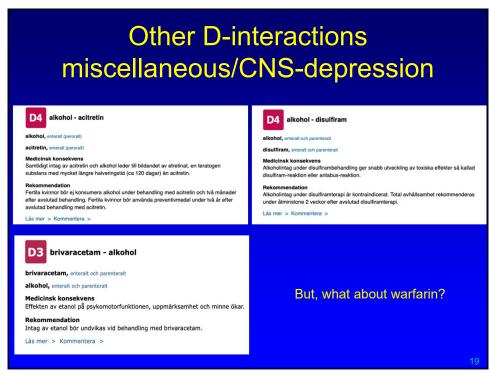
- Vd: 37 l/70kg
- · First pass metabolism in liver
 - Extraction ratio 0.2
- K_m at blood concentrations of 80 mg/L or 0.075‰ (rattfyllerigränsen går vid 0,2 ‰)
- Zero order kinetics no half life
- Vmax elimination: 0.1 g/kg/h
- Renal clearance 1 ml/min

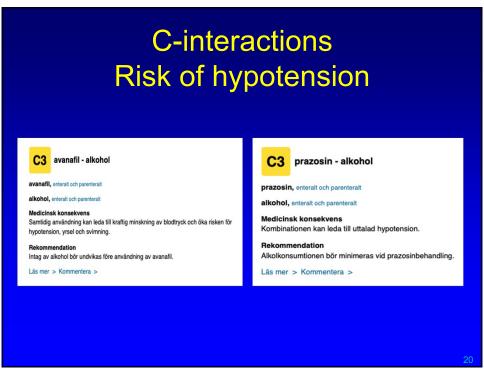
Interactions

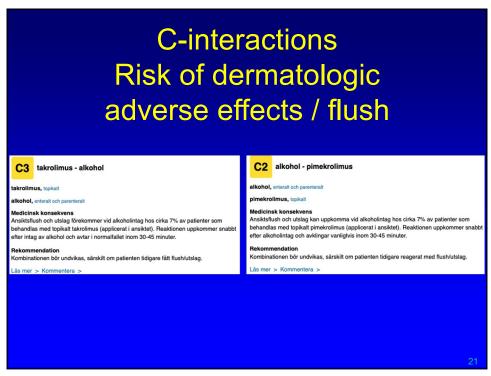

13

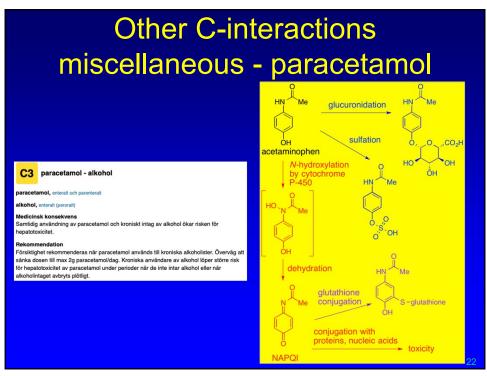

13

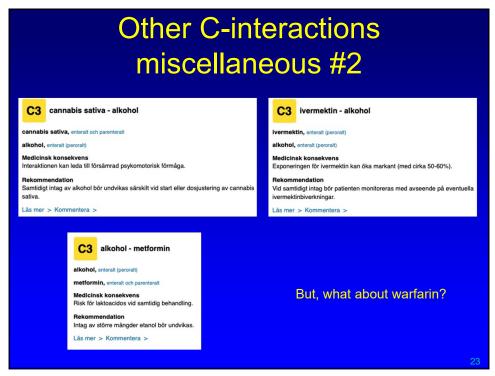
Alcohol and drugs: complex interrelationship

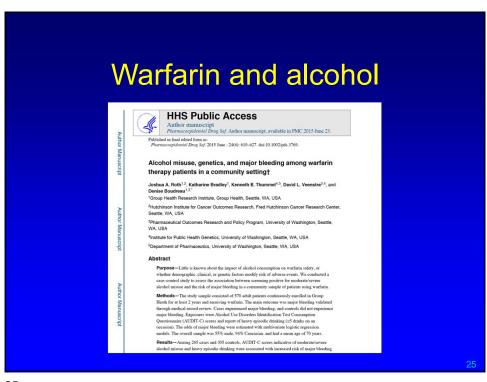

- Pharmacodynamic
 - Complex interactions with many receptors
 - Increased CNS-depression
- Pharmacokinetic
 - Complex
 - Induction / occupation / combinations (CYP2E1, CYP1A2, CYP3A4)
 - Acute effects / chronic effects
 - Sober / intoxicated
- Indirect
 - Effects on metabolism in general (NADH/NAD)
 - Effects on cell-membranes (PEth, FAEE)
 - Inhibition of ALDH (disulfiram-like effects)
 - Glutathione depletion: increased toxicity of drugs


Search in Janusi	ned	d	
		-	
Region Stockholm	Inio	ggad som: jorn.	schneede@umu.se
Janusmed	⊕ Info •	■ Kontakt	♣ Logga ut
Sök på läkemedelsprodukt och/eller substanss [akohol **] Namn på produkter eller substanser [inkludera utgångna/ej tillgångliga läkemedelsprodukter Rensa sökning [interaktioner Riskprofil			
Interaktioner Tjänsten ger en generell information utifrån substansens egenskaper och administrationsväg och tar inte hänsyn till patientens ålder,	ön eller aktuell dos	sering.	6
Visa A-Interaktioner alkohol			
Seven D-interactionsEight C-interactions			






Disulfiram-like reactions Type of Medication **Generic Names Brand Names** Analgesics (NSAIDs) Phenacetin various Phenylbutazone **Antibiotics** Cefamandole Mandol Cefoperazone Cefobid Cefotetan Cefotan Chloramphenicol various Fulvicin, Grifulvin, Grisactin Griseofulvin Nydrazid, Rifamate, Rifater Isoniazid Metronidazole Flagyl Furadantin, Macrodantin Nitrofurantoin Bactrim, Septra Sulfamethoxazole Sulfisoxazole Pediazole Isosorbide dinitrate Dilatrate, Isordil, Sorbitrate Cardiovascular medications Nitro-Bid, Nitrostat (nitrates) Nitroglycerin Diabetes medications Chlorpropamide Diabinese (sulfonylureas) Glyburide DiaBeta, Glynase, Micronase Tolazamide generic Tolbutamide generic



Summary

- Interactions between alcohol and drugs are complex and often based on data from chronic heavy drinkers.
- · Few data on moderate alcohol consumption
- Interactions are both of pharmacokinetic, -dynamic and "indirect" nature (metabolism)
- Risk of over-sedation (additive CNS-depression) in combination with e.g. BZD
- Risk of interaction with warfarin (/NOAC?)
- Risk of interaction with paracetamol / formation of toxic products
- Risk of disulfiram-like effects / flushing
- Alcohol in diabetes Risk of hypoglycemia and lactate acidosis
- No "safe" alcohol consumption levels in concomitant drug use

27

27

Alcohol and Medication Interactions

Ron Weat her mon, Phar m.D., and David W. Crabb, M.D.

Many medications can interact with alcohol, thereby altering the metabolism or effects of alcohol and/or the medication. Some of these interactions can occur even at moderate drinking levels and result in adverse health effects for the drinker. Two types of alcohol-medication interactions exist: (1) pharmacokinetic interactions, in which alcohol interferes with the metabolism of the medication, and (2) pharmacodynamic interactions, in which alcohol enhances the effects of the medication, particularly in the central nervous system (e.g., sedation). Pharmacokinetic interactions generally occur in the liver, where both alcohol and many medications are metabolized, frequently by the same enzymes Numerous classes of prescription medications can interact with alcohol, including antibiotics, antidepressants, antihistamines, barbiturates, benzodiazepines, histamine H₂ receptor antagonists, muscle relaxants, nonnarcotic pain medications and anti-inflammatory agents, opioids, and warfarin. In addition, many over-the-counter and herbal medications can cause negative effects when taken with alcohol. Key Words: moderate AOD use; prescription drug; adverse drug

Alcohol Res Health. 1999;23(1):40-54.

28